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Visual search, visual streams,
and visual architectures
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Most psychological, physiological, and computational models of early vision suggest that reti-
nal information is divided into a parallel set of feature modules. The dominant theories of visual
search assume that these modulesform a “blackboard” architecture: a set of independent represen-
tations that communicate only through a central processor. A review of research shows that
blackboard-based theories, such as feature-integration theory, cannot easily explain the existing
data. The experimental evidence is more consistent with a “network” architecture, which stresses
that: (1) feature modules are directly connected to one another, (2)-features and their locations
are represented together, (3) feature detection and integration are notdistinct processing stages,
and (4) no executive control process, such as focal attention, is needed to integrate features. At-
tention is not a spotlight that synthesizes objects from raw features. Instead, it is better to con-
ceptualize attention as an aperture which masks irrelevant visual information.

Two factors make early vision a difficult computational
problem. First, the solution space is combinatorially ex-
plosivebecause images contain a large number of feature
dimensions. Second, computation must be rapid, so
processing time is limited. Many theories suggest that the
visual system solves these problems by means of a divide-
and-conquer strategy; the retinal image is decomposed into
an array of separate representations that are processed in
parallel. Authors havecalled these representations by such
names as “feature spaces,” “feature maps,” “transform
spaces,” “intrinsic images,” and “parameter spaces.”
Because of the minor theoretical distinctions among these
terms, I wifi use the neutral term feature modules.

Althoughthey differ in details, feature-module theories
agree that early processing consists of two stages. The
retinal image is initially coded by an array of detectors,
each simultaneously tuned tomany features (color, orien-
tation, binocular disparity, etc.). Further, this rerinotopic
map is topographic; neighboring detectors represent the
activity at neighboring image points. The retinotopic map
then projects inparallel to a set of feature modules. Each
module registers only one (or at most, a small number)
ofthe image features coded in the retinotopic map. Lastly,
it has also been suggested that much (Ballard, 1985, 1986;
Barlow, 1981), or evenpossibly all (Treisman & Gelade,
1980), topographic information is lost during the mapping.

Feature-module theories have become popular in phys-
iology, computational vision, and psychology (both
psychophysics and cognition). This is not surprising, be-
cause division into “nearly decomposable” subproblems
(Simon, 1969) is the best domain-independent method for
solving complex problems. Although most researchers
have adopted the divide-and-conquer strategy, the theories
of different disciplines have been presented in different
languages and rationales. This has prevented any serious
attempt tocreate a single, unified framework for analyz-
ing early vision. The existing literature might be termed
“pick and choose.” An author with expertise and
knowledge of one discipline gratuitously chooses a few
popular (and usually secondary-source) articles from
another. The author then misunderstands and overinter-
prets the data from the unfamiliar field while ignoring a
vast literature that is inconsistent with the author’s theory.

In this article, I use visual architecture as a framework
for combining concepts from diverse disciplines. Ar-
chitecture provides a good level of analysis because it is
a high-level construct, so a system can be described
without having to specify too much detail. Thismay seem
uncomfortable to psychologists, who are used to form-
ing very specific microtheories. However, any attempt
at interdisciplinary synthesis is going to require a less
detailed level of analysis.

In this article, only feature-module architectures will
be considered. The architecture of a system specifies the
atomic components and their interconnections. This is
perhaps the most basic part of any theory, because ar-
chitecture provides the major constraints on a computa-
tional system. In the context of current search theories,
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architectural issues reduce to the following: (1) Do the
feature modules communicate indirectly or directly? (2) Is
there a separate featureless module for keeping track of
locations (Treisman & Gelade, 1980)? And (3) is the in-
tegration of modules sequential or parallel? A complete
theory would also address representational questions:
Which features are represented in individual modules, and
how are they represented? Lastly, a theory must also
describe an algorithm, a set of step-by-step procedures,
that runs on the architecture and uses the representation
to perform a specific task.

By focusing on architecture, one can avoid detailed dis-
cussion of representation and algorithm. This is desirable,
since as the discussion will show, current data are too
difficult to interpretand too inconclusive to permit expli-
cation of a detailed theory. Instead, architectural analysis
focuses on a few large and fundamental issues that con-
strain more detailed theorizing. For example, it will be
clear that current visual search theories depend on an un-
likely visual architecture. I will offer as an alternative not
a specific theory, but a class of theories.

The remainder of this article contains three sections.
First, I review the physiological, computational, and psy-
chological rationales for feature modules. In the subse-
quent section, I present alternative architectures and note
their fundamental differences. Lastly, I examineevidence
to evaluate the candidate architectures. The discussion will
center on theories of visual search and especially feature-
integration theory, because (1) it is an extreme example
of a blackboard theory, and (2) it has generated a large
body of research that can be used to evaluate architectures.

Feature-Module Rationales
Each discipline justifies feature modules in a different

way. The following discussion is a brief outline of the
rationales used in different research areas. The goal is
merely to demonstrate the overlap of fundamental con-
cepts and to provide a backdrop for the later discussion.
The material will be presented uncritically, with editorial
comments reserved for the subsequent sections.

Physiology. Physiological evidence suggests that the
brain is organized to facilitate a divide-and-conquer
strategy (DeYoe & van Essen, 1988; Hubel & Living-
stone, 1985, 1987; Livingstone & Hubel, 1987, 1988;
Phillips, Zeki, & Barlow, 1984). The early (Figure 1) part
of the visual pathways is divided into two streams special-
ized for different image features. There is disagreement
over the extent of specialization, but the extreme view
says that the “parvocellular” pathway carries information
on color and fme spatial detail, while the parallel “magno-
cellular” stream codes motion and contrast of coarse
form. This is basically an extension of the older dichotomy
(Breitmeyer &Ganz, 1976; Green, 1984) that postulated
the functional division between a high spatial frequency,
low temporal frequency “sustained channel” and a low
spatial frequency, high temporal frequency “transient
channel.” It resembles the magno-parvo dichotomy, ex-
cept that it makes no mention of color.
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(Hubel & Livingstone)
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Figure 1. Visual streams proposed by Livingstone and Hubel
(1987). Dashed and dotted lines represent weak and possible but un-
proved connections.

At the primary visual cortex (V 1), the two streams be-
comethree as they project to extrastriate areas. The mag-
nocellular stream synapses at layer 4B in V1 and then
projects to both the middle temporal area (MT) and the
“thick stripe” area of V2, which are connected to each
other. Both MT and thick stripe then connect toV4. The
parvocellular pathway splits and synapses at the “blob”
and “interblob” regions of V 1. From the interblob area,
cells project to the “pale stripe” (also called the “inter-
stripe” area) of V2 and then V4. The blob region, which
may also receive some magnocellular input, projects to
the “thin stripe” area of V2 and then to V4. There are
other lesser connections, as well as reciprocal inputs be-
tween some areas. Although there is again dispute over
both the physiological and the anatomical distinctness of
the streams, the proposed specialization is shown in
Figure 1. To oversimplify, there are distinct streams for
(1) color, (2) fine spatial information, and (3) motion,
binocular disparity, and coarse spatial information.

This organization reflects the limited connectivity (Bar-
low, 1981, 1986; Cowey, 1979) possessed by cortical neu-
rons; one cell can easily communicate with another only
if the two cells are in physical proximity. Image segmen-
tation, however, often requires the linking of pieces from
different areas of the retina and hence distant parts of the
retinotopic map. Feature modules solve this problem by
collecting information on each feature in a single corti-
cal site.
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Computation. Feature modules also reduce the com-
plexity of computation. A common technique (Ballard,
1984, 1985, 1986; Ballard, Hinton, & Sejnowski, 1983;
Barlow, 1986) is to divide retinotopic information into
feature modules by means of a Hough transform, a method
of mapping from one coordinate system to another. In vi-
sion, images are initially represented in a spatial coor-
dinate system. Figure 2, for example, shows a collection
of line segments in a coordinate system defined by x and
y directions in space. A Hough transform maps this topo-
graphic representation into a new system where the axes
are image parameters, rather than spatial coordinates.
Since lines can be specified by the equation y = mx +
b, they can be represented into an rn/b space. Note that
the new coordinate system has lost all spatial information.

The Hough transform brings together information on
similar features located throughout the visual field. This
is useful for tryingto segment images whenan occluding
surfacehas fragmented the scene. The two segments, with
different x/y locations but identical rn/b locations, might
be interpreted as a single line that is broken by an oc-
cluding surface. The new representation is therefore resis-
tant to both noise and occlusion.

There is no theoretical limit on the number of possible
dimensions. For example, the coordinate space could have
additional axes for color, binocular disparity, velocity,
and so forth, as well as for x and y spatial locations. As
the number of features and dimensionality of the space
increases, however, the number of coding units in the fea-
ture module grows exponentially. If all features of an im-
age were coded in a single parameter space—say, in the
retinotopic map—the resulting computation would be in-
tractable. This problem canbe solved by dividing the sin-
gle large feature module into a collection of smaller sub-
spaces, where each subspace represents a limited number
of image properties. For example, a space that coded
10 values on 10 feature dimensions would require
10,000,000,000 (= lO’°)coding units. If the 10-dimen-
sional space were divided into two 5-dimensional spaces,
then the coding would require only 200,000 (= l0~+
10~)units. Durbin and Mitchison (1990) tie physiologi-
cal and computational rationales together by suggesting

that the visual pathways from the retina to the cortical
surfaces are organized to reduce the parameter space.’

Psychology. Lastly, feature-module architectures are
commonly used in psychological theories of early vision,
especially search and image segmentation. The dominant
theory is called “feature-integration theory.” Although
this theory is usually credited to Treisman and Gelade
(1980), Attneave (1974) first stated the basic premise:

If, as we have reason to believe, color and form are
processed in separate parts ofthe nervous system, why does
one not simply perceive circle, triangle, blue, green without
knowing which form has which color? The simple answer,
I think, is that blue and circle are tagged to the same spa-
tial location. (p. 109)

Attneave, however, did not specify how the features are
combined or where the spatial information resides. Treis-
man and Gelade (1980) extended Attneave’s idea by sug-
gesting that focal attention combines features in a “master
map of locations.” Their theory suggests that early vi-
sion first analyzes images into separate features, each
represented in its own “map.” It is unclear, however,
exactly what is mapped. Each map seems to code not a
single featurebuta single feature value (Treisman & Sato,
1990). Moreover, the axes of the map are unspecified.
It is tempting to assume that they are spatial dimensions,
but the theory is vague about this point. Sometimes there
are suggestions that feature maps are topographic (Treis-
man & Gormican, 1988), but the theory also says that
features are free-floating with respect to location. Topo-
graphic information resides in a separate master map of
locations, which has links into the feature maps. The two
maps are independent until focal attention scans the master
map. If there is topographic information in feature maps,
it has no role in either feature detection (which uses pooled
activity) or feature integration (which requires focal at-
tention).

The theory also offers an algorithm for search. Fea-
ture maps register only pooled activity, which is the sum
ofactivity produced throughout the visual field by the rele-
vant feature. When searching for a unique feature, the
observer can apparently detect the target from pooled ac-
tivity within a map. Search for specific combinations of
features—conjunctionsearch—cannot be performed by ex-
amininga singlemap. The feature maps must be integrated
by focusing attention in the master map. Whenthe atten-
tional spotlight rests on a place in the master map, links
to the feature maps are activated, and features become
tied to specific locations. This somehow “glues” the
features into an object, which can then be perceived. In
brief, attention is a beam (Eriksen& Hoffman, 1972) that
serially scans a scene and constructs objects from raw
features.

The theory rests primarily on three pieces of evidence
(Treisman & Gelade, 1980). First, the search for features
is parallel, while search for conjunctions is serial. Con-
junction searches require the observer to move attention
from location to location in order to conjoin features and
examineobjects. Second, identification canbe better than
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Figure 2. Example of a flough transform. Images represented in
a spatial coordinate system are mapped to a new coordinate system
where the axes are feature values.
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localization. Features are represented independently of
their location, so observers can identify a feature (from
pooled activity?) without knowing where it is. Lastly, fea-
tures can miscombine into illusory conjunctions. Features
are represented independently of their locations and can
be combined only by attention. It is possible, if attention
is “overloaded,” to mistakenly construct an object from
features at different locations. Moreover, spatial separa-
tion of the features does not affect the probability of mis-
combination (Treisman & Schmidt, 1982), which further
shows that there is absolutely no topographic information
in feature maps.

There are several variants to the original integration the-
ory. One is “guided search” (Hoffman, 1978; Pashler,
1987; Treisman & Sato, 1990; Wolfe, Cave, & Franzel,
1989; see also Krose & Julesz, 1989; Zohary & Hoch-
stein, 1989), which preserves most of the original theory
but adds a new twist: the output of preattentive parallel
search can direct attentive serial search. Treisman and
Sato (1990), for example, suggest that observers can use
attention to inhibit entire feature maps. Acting “upward”
through the links to the master location map, inhibition
reduces the signal arising from particular places/objects
in the visual field. Serial search is more efficient, because
the low amplitude signals can be ignored. The Wolfe et
al. (1989) version is similar, except that preattentive
search heightens the activity of likely targets rather than
reduces the activity of unlikely ones. It is unclear whether
map suppression and spotlight attentional mechanisms are
the same or different mechanisms.

The major alternative to feature-integration theory has
no specific name, so I will call it “interrupt theory.” It
arises from studies (Atkinson & Braddick, 1989; John-
ston & Pashler, 1991; Nordruft, 1985; Sagi & Julesz,
1985) showing that observers can localize targets without
identifying them. Sagi and Julesz suggest that in pre-
attentive search, observers detect targets by a “difference
signal” arising from a discontinuity in a feature gra-
dient—the distribution of features across space. The
featureless signal is an interrupt that automatically attracts
focal attention to its location. The source of the signalcan
be recognized only after the observer moves attention to
the interrupt’s location.

This theory is also based on three pieces of evidence.
First, there is the superiority of localization over iden-
tification. Second, observers can localize targets in pre-
attentive search (Sagi & Julesz, 1985). Third, search per-
formance may improve with increased numbers of
distractors (Green, in press; Sagi, 1990; Sagi & Julesz,
1987). This could be interpreted to mean that observers
make comparisons between neighboring items. The larger
the display, the closer the items and the faster the com-
parison. All three show that location is accessible in par-
allel search.

The Sagi and Julesz (1985) theory (see also Nothdurft,
1985) differs from feature integration in several ways.
Observers detect texture/feature discontinuities in global
gradients, the spatial distribution of feature/texture ele-

ments, rather than pooled activity from feature maps. In
addition, Sagi and Julesz (1985) believe that feature mod-
ules are topographic. The discontinuities arise from com-
parison of neighboring display elements. In contrast,
feature-integration theory postulates nontopographic fea-
ture maps.

Johnston and Pashler (1990) suggest a compromise the-
ory. Like Sagi and Julesz (1985), they have concluded
that observers could sometimes localize but not identify
targets. However, Johnston and Pashler (1990) used non-
uniform backgrounds, so that detection could not arise
from a simple gradient discontinuity. Instead, observers
presumably detected an interrupt signal created by the
pop-out feature. However, the interrupt does not iden-
tify the source feature. As in the Sagi and Julesz (1985)
theory, observers must direct attention toward the inter-
rupt location to identify the source.

The two theories resemble feature-integration theory in
maintaining the dichotomy between attentive and preat-
tentive processing. Sagiand Julesz (1985) are vague about
the precise role played by attention. However, Johnston
and Pashler (1990) take an additional step away from
feature-integration theory by saying that attention does not
affect feature computations. Instead, attention merely
transfers feature identity to “central processes.”

To summarize, physiological, computational, and psy-
chological research all lead to the notion that early vision
represents images in feature modules. The rationales may
be different, but the message is clear: the visual system
operates with a divide-and-conquer strategy. These ques-
tions remain: “What is the system architecture?” And
“what puts Humpty Dumpty together again?”

To answer these questions, in the following section I
will examine three candidate architectures for feature
modules. After proposing the possible architectures, I will
use the psychological evidence, along with physiological
and computational data, to evaluate the alternatives.

Feature-Module Architectures
Feature modules are powerful because the divide-and-

conquer strategy can handle the high dimensionality of
visual information. While divide-and-conquer strategies
reduce computational complexity, however, they in-
troduce a new problem; the computations performed by
different feature modules must be combined into a con-
sistent global solution. The system architecture constrains
the methods for efficiently integrating local computations.

Possible architectures canbe divided into three classes.
In the first (Figure 3), each module operates indepen-
dently and in parallel. However, the integration of the
modules occurs at a central locus and is controlled by a
sequential executive processor. This will be termed a
blackboard, after an analogous architecture used in speech
understanding (Erman, Hayes-Roth, Lesser, & Reddy,
1980).

The basic organization is a collection of independent
“knowledge sources” that may interact only by “writ-
ing” on a common blackboard and whose interaction is
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than backto the retinotopic map. However, these architec-
tures would be computationally equivalent.

The secondarchitecture class is the network (Figure 3),
in which feature modules are directly connected together
and control is distributed. Features are detected and in-
tegrated throughout the visual field in a single, parallel
operation. Network architectures are common in the com-
putational literature and are sometimes used in physio-
logical theories. However, no major search theories are
explicitly based on a network.

There are numerous variations on this architecture too.
For example, Poggio, Gamble, and Little (1988) offer a
more complicated architecture, in which each module
projects to a separate “discontinuity map.” To combine
features, the system uses constraints from the discontinuity
maps rather than directly from the feature modules.

The followingqualitative account will show that a net-
work produces a very different view of feature detection
and integration. To start, consider segmentation within
a single feature module (Figure 4A), consisting of a topo-
graphic array of units. Although not shown, it is assumed
that the units have overlapping receptive fields, creating
some positional uncertainty. Segmentation proceeds by
parallel, cooperative processing among neighboring units.
One possible computation would be relaxation labeling
(Barnard & Thompson, 1980; Zucker, 1976), a class of
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Figure 3. Feature-module (FM) architectures. Each architecture
contains feature modules projecting from the retinotopic map. In
blackboards, feature modules communicate only through a central
map. In networks, feature modules may communicate directly.
Hybrid blackboard/network architectures are also possible.

controlled by a single “scheduler.” Blackboards have
many more complexities, so the analogy should not be
taken too literally. For the present purposes, it merely
is important to note that blackboards have a processing
bottleneck, due bothto the necessity to perform all oper-
ations on the central blackboard and to the control of all
processing by a single control operator.

The major search theories assume a blackboard ar-
chitecture, and feature-integration theory is probably the
most clear-cut example. Features reside in independent
modules and canbe integrated onlywhen focal attention,
acting as the executive, accesses the master location map,
the blackboard. Although their theories are less specific,
Sagi and Julesz (1985) and Atkinson and Braddick (1989)
also apparently subscribe to a blackboard architecture,
whereas Johnston and Pashler (1990) and Wolfe et al.
(1989) are more difficult to classify. (See also Navon,
1990a, for more blackboard possibilities.)

There are many possible variations on this architecture.
For example, Figure 3 shows the retinotopic map acting
as the blackboard. Some theories (Treisman & Gormi-
can, 1988) suggest that the retinotopic map projects to
an additional featureless module that records only topo-
graphic information (see Mishkin, Ungerleider, & Mako,
1983; Ungerleider & Mishkin, 1982). Feature modules
would then project to this specialized location map rather

A)

FM1

B)

FM1

FM3

Figure 4. Schematic representation of relaxation labelling within
and across feature modules. Each module contains feature detec-
tors in two-dimensional array. Detectorsare presumed to have over-
lapping receptive fields (not shown). Therefore, position can be coded
only by combined output from several detectors.
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cooperative computations that uses the smoothness con-
straint to find contours. The basic assumption is that neigh-
boring units should be sensing similar features.

In relaxation, each unit “queries” its neighbors to see
whether they signal a consistent segmentation. For ex-
ample, if a unit were looking for luminance orientation—
say, vertical contours—the neighbors directly above and
below it should also be signaling vertical, not horizontal,
diagonal, or no contour. Finding that the top and bottom
neighbors sense vertical would increase the strength of
the vertical signal coming from the unit in the middle.
Conversely, conflicting information from the neighbors
would decrease the strength of the vertical signal.

The definition of neighbor is variable. It could simply
mean the immediate neighbor (as shown in Figure 4A),
or it could extend out to cover a large area of the mod-
ule. Whatever the size, consistent neighbors increase the
unit’s confidence in the vertical contour, whereas incon-
sistent neighbors reduce it. The neighbors themselves
check the consistency of their neighbors. This propagates
the influence of each unit beyond its own neighborhood.
Each unit is influenced directly by units in its neighbor-
hood and also indirectly by distant units to which it has
no direct connection.

The unit continuously assesses consistency of the ver-
tical hypothesis (as well as other possible orientation
hypotheses) with its neighbors’ activities and adjusts the
probability that it is indeed sensing a vertical discontinuity.
After many iterations, the units would presumably con-
verge on a unique solution for both contour orientation
and precise location.

Relaxation computations proceed concurrently within
and across modules. Units query neighbors at the same
locations in other modules (Figure 4B) as well as neigh-
bors within the same module. That is, while performing
its own computations, the luminance module may be
querying the binocular disparity module to see if it also
is sensing a vertical discontinuity at the same location.
If so, the module segmentations are consistent and mutu-
ally reinforce each other. If not, there may be multi-
stability or some other ambiguity. Another solution is to
have some modules exert stronger constraints than others
and to resolve inconsistencies in favor of the stronger
module. For example, there is evidence that motion and
binocular disparity exert strong constraints on color (see
below).

The within- and across-module computations occur in
parallel. Features are detected and integrated in a single
procedure. In fact, consistency across modules is used to
ascertain that a particular feature is present in a given mod-
ule. Suppose there is uncertainty in the luminance mod-
ule as to whether a contour exists at a particular location.
If there is strong evidence in the binocular disparity mod-
ule for a contour at that location, the binocular disparity
would reinforce the vertical contour in the luminance mod-
ule. This does not happen in blackboards, because fea-
ture detection and integration are two distinct and sequen-
tial operations.

However, the connections within a module are shorter
than those across modules (Cowey, 1979), so it seems
likely that within-module computations would proceed
faster. Interruption early in processing, such as by a mask,
may cause the local segmentations to become partially
completed but not firmly coupled together (see the dis-
cussion of illusory conjunctions below).

This is not meant to be a detailed model. There are
many variations on the relaxation theme (see, e.g., Bal-
lard, 1984; Barnard & Thompson, 1980; Barrow &
Tenenbaum, 1978). It merely describes how a distributed
network might handle feature detection/integration and
underscores the differences between the operations in net-
works and blackboards. The architectures do not differ
in the assumption of parallel feature processing. Both as-
sume that retinal information is divided into modules.
They do not necessarily differ on the features that are
represented in different modules. Although it may be im-
portant for detailed theories, discussion of architecture
does not require specification of the primitives represented
in FM1, and so forth, in Figure 3.

The major difference between architectures consists in
how features may be efficiently combined—are feature
modules independent or interconnected? If feature mod-
ules directly connect, there need be no common black-
board or central executive process, such as focal atten-
tion, to glue features together. In blackboard architectures,
and in the theories they engender, feature detection and
feature combination are serial stages. The first is pre-
attentive, whereas the second is governed by attentive con-
trol. In networkarchitectures, the visual system must still
detect and combine features, but the two tasks are per-
formed in parallel, without central control. In fact, the
two operations can be mutually supportive. There is no
need to postulate a dichotomy between focal and pre-
attentive processing in feature integration.

A network architecture does not necessarily imply that
attentional mechanisms are fiction. However, as an ar-
chitecture for visual search, networks suggest that focal
attention plays no major role in feature integration. I will
return to possible roles for attention in my final remarks.

Finally, the third possible architecture is a net-
worklblackboard hybrid (Figure 3). This is a blackboard
with direct connections between subsets of modules. After
all, there is no reason to assume that all feature interactions
are handled identically. To highlight key issues, however,
in the remaining discussion I will continue to contrast net-
works and blackboards.

Evaluation of Blackboard and
Network Architectures

Because current theories generally assume a blackboard
architecture, there is relatively little behavioral evidence
about networks. The initial discussion will therefore center
on arguments against blackboards. In particular, I will
present arguments against feature-integration theory, sim-
ply because it is the most extreme blackboard theory and
because it has led toa largebody of relevant experimen-
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ml research. In the first three sections, I will discuss the
three key pieces of evidence for feature-integration theory;
a subsequent section will contrast predictions of black-
boards and networks. In the final sections, I will exam-
ine other psychophysical and physiological evidence in
order to evaluate architectures.

1. Detection, localization, and identification occur in
parallel. Feature-integration theory says that features are
stored separately from their location codes. This aspect
ofthe theory is supported by data showingthat observers
can detect targets without localizing them (Treisman &
Gelade, 1980). However, this finding has not been repli-
cated. Moreover, Johnston and Pashler (1991) point out
possible artifacts in Treisman and Gelade (1980) and in
similar studies. For example, many studies suffer from
the “negative information problem.” If there are two pos-
sible targets, and if they are not equally detectable, ob-
servers can perform abovechance with a simple strategy;
when no target is visible, they can choose the less detect-
able alternative.

In myown study (Green, in press), I compared detection,
localization, and identification and found no difference
in performance. Furthermore, a review of the literature
showed no clear evidence that localization and identifi-
cation are performed at different levels of accuracy.
Roughly speaking, if the observer can detect the target,
he can localize and identify it. This finding contradicts
both feature-integration and interrupt theories, because
it argues that the three tasks do not represent distinct
processing stages. However, it is consistent with a net-
work in which feature detection and object synthesis oc-
cur in a single parallel operation. Green (in press) out-
lines the argument in more detail.

2. Conjunctions can be detectedinparallel. Blackboard-
based theories require a central blackboard and a central
control process to integrate feature modules. In feature-
integration theory, the master map is the blackboard, and
attention serves as the control process for gluing features
together. The primary supporting evidence is that response
time in conjunction search grows linearly as the number
of display items increases. Presumably, the observer must
perform an item-by-item serial scan. To draw this infer-
ence, feature-integration theory relies on three axioms:
(1) search curves are diagnostic of serial versus parallel
processing; (2) feature searches are always parallel and
conjunction searchesare always serial; and (3) attention
is needed to glue features together. The evidence does not
clearly support any of these axioms.

To start, there is doubt that the slopes of search curves
have much ability to reveal details about the underlying
process. Townsend (1972) noted that the slopes of curves
do notnecessarily distinguish between serial and parallel
processes. There are various types of limited-resource
parallel systems that behave much like serial systems. For
example, relaxationprocessing is parallel, but depending
on the circumstances, convergence time could grow with
display size.

Anotherproblem is that linear curves could be predicted
by many different theories. Sagi (1988)offers a different

explanation for the positive slopes found in conjunction
search. Serial search occurs because each feature map is
confused by irrelevant feature gradients (see item 4 be-
low). After removing the irrelevant gradients, Sagi
demonstrated that conjunctions of spatial frequency and
orientation, which presumably required serial search
(Walters, Biederman, & Weisstein, 1983), would instead
pop out.

Navon (1990a) argues that conjunction search would
produce linear curves even if features were preattentively
conjoined. In fact, he argues that because ofthe computa-
tional considerations, feature-integration theory really
predicts positively accelerating, not linear, curves. The
resulting debate (Navon, l990b; Treisman, 1990) over
semantics underscores the difficulty in making strong in-
ferences from the slopes of search functions.

Empirical evidence further blurs the distinction between
serial and parallel search. Whereas initial evidence (e.g.,
Treisman & Gelade, 1980) suggested that observers must
scan each item serially to detect conjunctions, more re-
cent studiesoften report exceptions. Several studies (e.g.,
Egeth, Virzi, & Garbart, 1984; Mordkoff, Yantis, &
Egeth, 1990; Wolfe et al., 1989; Zohary & Hochstein,
1989) suggest that observers need notexamine every item
in serial search. One explanation is that search can be re-
stricted to a subset of items by ignoring potential targets
containing a particular feature. This has given rise to
“guided search” theories (e.g., Treisman & Sato, 1990),
which suggest that observers use the information gained
from an initial parallel search to make the subsequent
serial search more efficient. Such theories, however, are
still blackboard theories, because attention is the control
mechanism that glues features together.

Other studies show that observers normally detect many
conjunctions, such as color or shape with binocular dis-
parity (Nakayama & Silverman, 1986; Steinman, 1987)
and motion (McLeod, Driver, & Crisp, 1988), indepen-
dently of display size. In fact, parallel conjunction
searches may be the rule rather than the exception. Several
studies (Moraglia, 1989a; Steinman, 1987; Wolfe et al.,
1989) have reported that large target-distractor value
differences and/or practiced observers produce shallow
or even flat slopes for most conjunctions.

Interpretation is further clouded by the similarity of con-
junction search to the search for feature targets that are
similar to the background. In fact, Moraglia (1989a; see
also Dehaene, 1989) demonstrated that the distinction be-
tween serial and parallel search correlates poorly with the
distinction between feature and conjunction search. He
measured search time for a conjunction of spatial fre-
quency and orientation and for each feature individually.
When target—distractor differences were large, both fea-
tures and conjunctions were detected in parallel. If tar-
get-~distractordifferences were small, search was serial
for both features and conjunctions. Serial search does not
correlate with the need to glue features together.

Treisman and Sato (1990) try to explain why there is
such a poor correlation between serial search and con-
junction targets. They note that the pop-out conjunctions
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typically contain features—binocular disparity and
motion—that cue depth. Perhaps observers divide items
into different depth planes, so the conjunction search ef-
fectively becomes a feature search at two spatial locations.
Although this strategy is reasonable, there is no evidence
that observers actually employ it. Moreover, this notion
does not explain Moraglia’s (l989a), Sagi’s (1988) or
many of Wolfe et al. ‘s (1989) results.

As noted above, Treisman and Sato (1990) also postu-
late a new attentional mechanism—map suppression. Con-
junctions can be detected easily (in parallel or with a
shallow slope) if attention can suppress one feature map.
The notion that observers can selectively attend to visual
features is not new and has been used in many theories
(e.g., Garner, 1974). However, other studies (Posner,
1978; see also item 4 below) have shown that observers
often cannot selectively attend one feature to the exclu-
sion of another.

This modification, even if true, substantially weakens
feature-integration theory. First, it adds new baggage and
greatly reduces the theory’s economy, which is suppos-
edly a major virtue (Treisman & Sato, 1990). More im-
portantly, much of feature-integration theory is based on
the distinction between flat and sloped search functions
because they correspond to parallel/feature versus
serial/conjunction search. The revised theory implies that
search curves do not reveal much about processing. There
is no sharpdistinction between flat and sloped curves, and
the slopes may be due todifferent combinations of atten-
tional strategies.

3. Attention is nor necessary to combine features. To
summarize the argument so far, blackboard-based the-
ories, such as feature-integration theory, rely largely on
three pieces of empirical data: superiority of identifica-
tion over localization, the serial functions of conjunction
search, and the existence of illusory conjunctions. The
superiority of identification has not been replicated and
may have been due toartifacts. Observers perform many
conjunction searches in parallel, and in any event, the
feature-integration explanation is in doubt. This leaves
only illusory conjunctions to support feature-integration
theory.

Assuming that illusory conjunctions exist, two impor-
tant questions arise: (1) Do illusory conjunctions occur
more often outside the focus of attention? And (2) if so,
does this prove that attention is the perceptual glue that
connects feature modules together?

With regard to the first question, several authors (Bri-
and & Klein, 1987; Cohen & Ivry, 1989; Prinzmetal,
Presti, & Posner, 1986; Treisman & Schmidt, 1982) have
concluded that attention does integrate features. However,
the interpretation of these studies is unclear, illusory con-
junctions are measured indirectly, so the experimenter
must make many assumptions: the locus and area of fo-
cal attention must be known, feature errors must act as
an adequate baseline, and so forth.

Cohen and Ivry’s (1989) study exemplifies the difficulty
of interpreting illusory conjunction studies. Cohen and

Ivry claim that outside of attention, illusory conjunctions
occur only between neighboring features with less than
10 separation. Inside the attentional focus, illusory con-
junctions can occur between any two features. Cohen and
Ivry used the ratio of featureerrors to conjunction errors
tomeasure the illusory conjunction rate. Observers detected
letters (“X” or “F”) in one of four colors, withan “0”
of a different color as a distractor. When the observers
correctly reported the letter and not the color, there were
three possiblecolor errors. Feature errors occurred when
the guessed color was not in the display, whereas con-
junction errors occurred when observers guessed the color
of the distractor. With three possible colors, pure guess-
ing would predict a 1:2 ratio of color feature errors to
conjunction errors. A lower ratio would show that ob-
servers guessed the distractor color at more than chance,
and it would suggest that illusory conjunctions must have
been occurring.

Unexpectedly, some conditions produced “exclusion-
ary conjunction” errors, where the ratio of feature to con-
junction errors was above chance. There is no satisfac-
tory explanation for this result. Moreover, the authors
never explain the inverse relation between overall ac-
curacy and the feature-conjunction error ratio. Lastly, this
study may contain the “negative information problem”
(Johnston & Pashler, 1990).

There is another reason for doubting Cohen and Ivry’s
(1989) interpretation of their experiment. As in all other
illusory conjunction experiments, Cohen and Ivry had to
make the implicit assumption that features can be identi-
fied but not localized. As already noted above, only Treis-
man and Gelade (1980) obtained this result. In other
studies (reviewed inGreen, in press), localization has been
as good or better than identification.

Tsal (l989a, l989b) has pointed out further flaws in
the design and interpretation of the experiments (e.g., Bri-
and & Klein, 1987; Treisman & Schmidt, 1982) that pur-
portedly confirm Treisman’s account of illusory conjunc-
tions. In fact, he notes that one (Prinzmetal, et al., 1986)
can easily be interpreted as providing counterevidence.
Tsal (1989a, l989b) examined feature (wrong feature) and
conjunction (right features but wrong combination) errors
both inside and outside of attention. Feature-integration
theory predicts that illusory conjunctions shouldbe more
frequent outside of focal attention. Although there were
somewhat more conjunction errors outside of attention
(35% vs. 25%), the number of conjunction errors both
inside and outside of attention was much greater than the
number of feature errors. What caused all those conjunc-
tion errors inside of focal attention and why were they
so much more frequent than feature errors? If attention
is required to conjoin features and make them percepti-
ble, how could one even measure conjunction errors out-
side of attention?

Authors tangled in these issues (see the lively debate
by Briand & Klein, 1989; Tsal l989a, 1989b) have all
been plagued by the same problem: How can one really
know if a stimulus is being attended? The whole notion
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of inside versus outside of attention depends on the spot-
light metaphor and the assumption that there is a sharp
dichotomy between attending and not attending. Suppose
there were a single, graded process, so that it might be
possible to “attend” stimuli with varying degrees of
resources, or suppose there were no beam. In fact, data
(Gathercole & Broadbent, 1987) do show that the effects
of distractors depend not on whether or not they are in-
side a beam, but on their distance from the target. It sim-
ply takes more time for the influence ofdistant distractors
to reach the target. This could explain many phenomena
previously attributed to an attentional spotlight.

The second major question is whether attentional ef-
fects, even if they could be demonstrated, would prove
that attention is the perceptual glue. To merely say that
ifiusory conjunctions occur because features are mislocal-
ized is to say very little. Poor registration of location is
not necessarily antagonistic to network architectures.

In fact, illusory conjunctions would be expected to oc-
cur simply because there is uncertainty inherent in lOcal-
ization. Many studies (e.g., Hilz, Rentschler, & Brettel,
1981; Morrone, Burr, & Spinelli, 1989) have demon-
strated that, due in part to coarser receptor sampling, cor-
tical magnification, and misfocus, humans are poor at
localizing single features in the peripheral field. Since
color is used as a feature in most experiments, it is par-
ticularly noteworthy that color localization is poor
throughout the visual field (Troscianko & Harris, 1986).

Mislocalization is further encouraged by the combina-
tion of eyemovements with the different processing rates
for different features. For example, low spatial frequen-
cies are processed faster than high spatial frequencies
(Breitmeyer & Ganz, 1976; Green, 1984), and they form
faster than color (e.g., Schwartz & Loop, 1982). If the
display is presented during an eye movement, the differ-
ent processing times may cause features to be coded at
different retinotopic locations. Brief exposure may reduce
this artifact but cannot eliminate it. True, it takes about
200-250 msec (Hallet, 1986) to initiate an eye movement,
but the eyes could already be in motion before flash on-
set. Most studies have been done with unpracticed ob-
servers who had little experience inholding their eyes still
during fixation.

In short, any mechanism responsible for combining fea-
tures represented in separate modules is going to make
errors, especially in the periphery and especially with
color. Since observers typically foveate the location be-
ing attended to, it is not surprising that there are more
illusory conjunctions outside of attention (i.e., in the
periphery). As Prinzmetal and Keysar (1989) correctly
note, it would be surprising if illusory conjunctions did
not occur.

Tsal (1989a) has also argued that even ifattention were
related to illusory conjunctions, this does notnecessarily
mean that attention glues features together. Attention
facilitates many tasks, such as simple luminance detec-
tion. Suppose that features are integrated by some in-
dependent process. Might not attention facilitate this

process as well? If so, attention can no more be the mecha-
nism of feature-integration than it can be the mechanism
of luminance detection.

Attention could affect feature combination in many
ways. Tsal (1989a) suggests that memory loss may cause
illusory conjunctions. Perhaps attention can prevent the
memory decay. This is supported by the observation
(Green, in press) that when subjects must perform two
concurrent tasks, they perform slightly worse on the task
measured by the second response. Wolfe et al. (1989)
seem toargue that attention detects activity levels at differ-
ent spatial locations (see below). Prinzmetal and Keysar
(1989) assume that initial feature registration is coarsely
localized. To prevent illusory conjunctions, the feature
must be more accurately pinned to position. Any factor—
and lack of attention is only one of many—that prevents
finer localization will therefore encourage illusory con-
junctions.

There are other arguments against the attention-as-glue
theory. illusory conjunctions, even under the most favor-
able conditions, are relatively uncommon. Featuresgener-
ally manage to become integrated, with or without atten-
tion. If I try as hard as possible, I still cannot create
illusory conjunctions by narrowing my attentional focus.
Tsal (1989a) further notes that if attention were required
for one to integrate features, the attentional spotlight
would have to be narrowed to fit each object exactly and
perfectly. This, Tsal argues, seems untenable.

Regardless of the illusory conjunction data, and their
explanation, it is clear that focal attention is unnecessary
tocombine features. Houck and Hoffman (1986) created
orientation-specific color aftereffects in one part of the
display while the observer attended another. Since the af-
tereffect requires conjunctive processing of oriented lu-
minance edges and color (Savoy, 1987), these features
must have been joined outside of focal attention.

Treisman and Gormican (1988) attempt to dismiss
Houck and Hoffman (1986) by saying that the aftereffects
were created at an earlier stage of vision where features
are still conjoined. Such explanations are hard to evalu-
ate, because they are not based on any real evidence. (In
fact, the source of form-specific color aftereffects is poorly
understood.) However, this argument can be partially
refuted by noting that color-coded cells, even in early vi-
sion, typically have little orientation tuning (see, e.g.,
Hubel & Livingstone, 1987). Similarly, color aftereffects
canbe madecontingent on direction of motion (Stromeyer
& Mansfield, 1970), although color and motion are al-
ready presumably segregated prior to the lateral genicu-
late nucleus (LGN).

The binocular rivalry paradigmprovides more evidence
that features combine without attention. In many studies
(e.g., Blake & Fox, 1974), it has been possible to create
aftereffectsspecific toparticularfeaturecombinations even
when the stimuli were presented toan eye suppressed by
binocular rivalry. The observer does notconsciously per-
ceive the adapting stimuli, so it is hard tobelieve that the
observer would be applying focalattention. Rivalry exper-
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iments are especiallyconvincing, because they require no
assumptions about spatial distribution of attention.

Can networks explain illusory conjunctions? Recall that
cooperative processing within a feature module should oc-
cur faster than across modules. This would allow the fea-
ture segmentations to begin forming before localization
was precise and before different modules were firmly cou-
pled. illusory conjunctions could occur between spatially
adjacent features, although not between distant ones (Co-
hen & Ivry, 1989).

4. Variation in the “irrelevant” dimension degrades
search and segregation. There are some clear differences
in predictions made by networks and blackboards. Net-
work architectures suggest that feature modulesare directly
connected to provide mutual constraint. If the segmenta-
tions from different modules are inconsistent, it should
be more difficult for each module to compute a solution.
If the modules are independent, as in blackboards, the
computation in one module should have no effect on the
others during preattentive vision.

Data show that features interfere with one another. In
most studies, the target and distractors are identical ex-
cept for a single feature. Several experimenters have asked
whether orthogonal variation in an “irrelevant” (for the
detection task) dimension degrades performance. If fea-
ture maps functioned independently, the orthogonal var-
iations should have no effect. Results (Callaghan, 1984,
1989; Callaghan, Lasaga, & Garner, 1986; Pashler, 1988)
often show, however, significant loss of performance
when an irrelevant feature is randomly varied.

5. Features sum toproduce better detection. Just as in-
consistent segmentations from different feature modules
degrade performance, consistent segmentations would
support each other and enhanceperformance. Severalex-
periments have also demonstrated this effect.

Studies show that observers can more easily detect fea-
tures that are conjoined rather than separate. Caelli and
Moraglia (1985) found that dimensions could sum inpre-
attentive texture segregation. Observers viewed textures
composed of Gabor signals that variedin spatial frequency
and/or orientation from the distractors. Speed of segre-
gation depended on the difference in feature value between
target and background on each dimension; small differ-
ences produced poor segregation, whereas larger differ-
ences produced faster responses. Most importantly,
however, simultaneous small variations of orientation and
spatial frequency produced the same effect as did a large
difference in either dimension alone. Two features, neither
of which popped out by itself, could sum to produce rapid
detection.

Farell (1984) reported a similar result using a different
paradigm. He tested for detection of two features in two
separate display items or the same two features conjoined
in the same item. Observers detected conjoined features
(two features, same location) more readily than they did
the same features in unspecified combinations (two fea-
tures, different locations). If features are independent, de-

tection of conjoined features and separate features should
be equivalent. On the contrary, direct connection of fea-
ture modules predicts better detection of features at the
same spatial location.

Wolfeet al. (1989) compared detection of “triple con-
junctions” (three features) and “simple conjunctions”
(two features). The triple conjunctions were easier to de-
tect and often produced flat functions of response time
versus display size (see also Quinlan & Humphreys,
1987). Wolfe et al. (1989) suggest that each preattentive
map creates its own segmentation, which marks possible
target locations. These maps are apparently topographic
and superimposed, so that the activity from each map sums
location-by-location with the others. If activity at the tar-
get position is sufficiently high, and if noise in the sys-
tem is sufficiently low, attention is immediately directed
to the correct location, and search time is independent of
display size. However, low signal and high noise may
cause a few misdirections of attention, resulting in a func-
tion with a small positive slope.

If the preattentive/attentive dichotomy is removed, this
model agrees well with a network architecture that uses
simple summation rather than relaxation. Each module
segments the image and combines its evidence with other
maps. The more modules that constrain the segmentation,
the easier the search. Focal attention is excess baggage
in this model, since it plays no significant role. It does
not explicitly glue maps together; feature activity appar-
ently sums simply because the maps are topographic and
are superimposed on one another. Focal attention appears
to act merely as a mechanism to detect the summed ac-
tivity. It is not clear why attention must be moved to the
target to accomplish this. The only real purpose served
by attention is that misdirections provide an explanation
for the occasional positive slope. However, Wolfe, et al.
(1989) offer no proof that this is the correct explanation.
It would be simpler to dispense with focal attention al-
together andjust assume, as many have done (e.g., Green,
Terman, & Terman, 1979), that response time lengthens
with smaller sign—noise differences.

Lastly, features sum to produce improved localization
as well as detection. Rivest and Cavanagh (1991) found
that observers were better at locating edges created by
combinations of color and luminance than by either fea-
ture alone. Again, this would be predicted from mutu-
ally constraining, topographic feature modules.

6. Feature modules are topographic. Feature-integration
theory says that feature maps contain no usable topo-
graphic information. Evidence showing that feature mod-
ules are topographic serves as indirect evidence favoring
network architectures. Recall that the original motivation
for blackboard theories was apparent independence of
codes for features and their spatial position. Although
there is no principled reason why blackboard architec-
tures could not have topographic feature modules, feature-
integration theories (Briand & Klein, 1987; Treisman &
Gelade, 1980; Treisman & Gormican, 1988) assume that
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features float freely in their map and that locations are
stored in a separate map of locations. The two can only
be connected by focal attention.

On the other hand, a network must have topographic
information in each feature module because there is no
separate location map. The goal of a network is to inte-
grate local computations into a consistent global solution.
A likely definition of a consistent solution is that it parses
visual space into a unique set of segments. To know
whether the local solutions are consistent or inconsistent,
each module would need to know the location of its own
features as well as the location of features in other mod-
ules. This is not necessary in a blackboard, because the
features are presumably tied to a master location map.

Many experiments suggest that feature modulesare topo-
graphic. In several studies (Green, in press; Sagi, 1990;
Sagi & Julesz, 1985, 1987), search has become more ac-
curate with increased numbers of distractors. Sagi and
Julesz (1987) have interpreted this tomean that observers
perform preattentive search by making local comparisons
in a feature gradient. As the display size increases, the
items become closer together and the comparison easier.

This conclusion is reinforced by several other studies.
Moraglia (1989b) showed that search is much easier if
the distractors are arranged to create a structured back-
ground (see also Gorea & Julesz, 1990). Gathercole and
Broadbent (1987) found that the effects of distractors de-
pended on their distance from the target. Lastly, Fahle
(1990) examined preattentive search for lines with ver-
nier offsets amid straight line distractors. The vernier tar-
gets popped out, even though the only cue was a very
small relative shift in position of two line segments.

Lastly, Cohen and Ivry (1989), taken at face value,
reported that illusory conjunctions occur only between
nearby features. This result refutes the assertion (Treis-
man & Schmidt, 1982) that illusory conjunctions occur
independently of feature proximity and therefore the no-
tion of pooled activity. It also shows that coarse location
information must be available in early vision.

As Sagi and Julesz (1985) note, search results suggest
that local differences are important and that in search, lo-
cal constraints are more important than global ones (see
final remarks). In the kind of network model that is
presented above, processing arises strictly from local com-
putations within a neighborhood of detectors. Close prox-
imity would therefore help speed the computation.

7. Otherpsychophysical experiments show thatfeatures
are linked. A general theory of early vision should be ap-
plicable, not only to search, but to other behavioral
paradigms. I have already mentioned the Houck and Hoff-
man (1986) experiment, which showed that features com-
bine in orientation-contingent color aftereffects. Many
other studies, although not directly concerned with the
distinction between attentive and preattentive processing,
have resulted in close coupling among features. The liter-
ature is too large to cover in depth, so the following is
merely a sampler.

Several studies have yielded interactions between iso-
luminance (defined by color) and luminance (defined by
brightness) contours. Switkes, Bradley, and DeValois
(1988; see also DeValois &Switkes, 1983) found that iso-
luminant gratings can mask luminance gratings but that
luminance gratings canfacilitate isoluminant ones. In other
studies, luminance edges have interacted with isoluminant
edges to aid in color identification (e.g., Eskew, 1989).

Luminance and color also interact in motion percep-
tion. For example, isoluminant gratings appear to move
much slower than luminance gratings (Cavanagh, Tyler,
& Favreau, 1984; Troscianko & Fahle, 1986). Most mov-
ing objects have both color and luminance contrast, so
the luminance edges should leave color lagging behind.
Since this does not happen, there must be a constraint
keeping form and color joined.

Others (Kleffner & Ramachandran, 1988; Ramachan-
dran, 1987) have found that a moving luminance pattern
“captures” an isoluminant pattern and makes it appear
to move. Ramachandran (1987) suggests that the con-
straint is unidirectional, from motion to color. Green and
Odom (1991) also found that luminance gratings capture
isoluminant ones even when separatedby largedistances.
However, there is also evidence of a mutual constraint.
Apparent velocity of colored gratings lies between the ap-
parent velocity of the isoluminant and luminance compo-
nents alone (Cavanagh et al., 1984), and Green (1991)
has found that moving isoluminant patterns can capture
blackdots. Kleffner and Ramachandran (1988) have simi-
larly reported a capture of color by binocular disparity.

Interaction is also found in motion aftereffects and
stroboscopic motion. Adaptation to moving luminance
gratings produces motion aftereffects in isoluminant grat-
ings (Cavanagh & Favreau, 1985). Green (1989) found
interaction in correspondence matching during strobo-
scopic motion. Observers viewed a seriesof frames con-
taining red and green dots on an isoluminant yellow back-
ground. Dots in successive frames moved to neighbors
of the same color, producing coherent motion. Addition
of luminance contrast withambiguous matches destroyed
the coherent motion of the colored dots. The color failed
to uncouple from luminance and move in its own path.

Feature interactions are not restricted to color. Evidence
(see, e.g., Breitmeyer & Ganz, 1976) suggests that mo-
tion (the transient/magnocellular stream) can inhibit
detailed form (the sustained/parvocellular stream) and pos-
sibly vice versa. Moreover, many adaptation, masking,
subthreshold summation, detection-discrimination, and
figural aftereffects data (reviewed by numerous authors;
see, e.g., Braddick, Campbell, & Atkinson, 1978) show
detectors selective to combinations of spatial frequency,
orientation, direction of motion, binocular disparity, and
so forth.

Allof these studies have shown feature linking in early
vision. It might be argued that the effects occurred either
before features were segregated or after they had been
glued together by focal attention. Treisman and Sato
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(1990) made the first of these arguments with respect to
Houckand Hoffman (1986), and I have already mentioned
some counterarguments.

There is no obvious way to determine conclusively
whether search operates on the same representations as
adaptation, motion capture, and so forth. It is possible,
however, to compare known properties of the represen-
tations used in different tasks. It is interesting that the
bandwidths of orientation channels defined by many
different tasks are similar. Using the standard half-
height/half-width criterion (see Braddick et al., 1978),
manyorientation-specific adaptation studies (see Braddick
for a review) have yielded orientation bandwidth, with
values in the 12°-150 range. Similar bandwidths have
been found for correspondence matching (Green, 1986)
and motion capture (Green & Odom, 1991). Bergenand
Julesz (1983) measured search performance with a range
of orientation differences between target and mask. It is
clear from their data that orientation bandwidth for search
falls between 10°and 20°.Of course, the similarity could
be explained away post hoe; but with no convincing ar-
gument, why not accept the simpler explanation—that all
three tasks have the same representational substrate?

In addition, it is clear that the conjoining of features
does not correlate with focal attention. The same pair of
features can appear joined without focal attention and in-
dependent with focal attention. For example, color seems
loosely tied to stereo depth (Lu & Fender, 1972), even
though the observers inspect the display with focal atten-
tion. On the other hand, observers can perform parallel
search for conjunctions ofcolor and depth. This is exactly
the reverse of the feature-integration theory predictions.

Myconjecture is that color and binocular disparity are
always directly linked but that the constraint flow is
stronger in one direction; binocular disparity and lu-
minance constrain color more than color constrains them.
However, the asymmetrical constraint is apparently suffi-
cient to support parallel search.

8. Physiology (combined with behavioral data) refutes
blackboards. Many psychologists and computationalists
use physiological data to reinforce their theories. This is
not strictly necessary in the current discussion, because
architecture is an abstract computational concept that could
be implemented in software as well as hardware. Further,
history shows that attempts to link physiological data to
perceptual phenomena are at best tenuous and at worst
misguided. Nevertheless, physiological data provide a
major rationale for feature-module theories.

Unfortunately, the physiological evidence on feature
modules is inconclusive. Most researchersbelieve that the
primary visual pathway is organized in two or more
streams from the retina to the LGN and then in threemajor
streams from the primary visual cortexto extrastriate cor-
tex and beyond. However, there is disagreement over the
functional and anatomical integrity of the streams. One
view (e.g., that of Hubel & Livingstone, 1987; Living-
stone & Hubel, 1987, 1988) sees the streams as highly

distinct, with little overlap in cell properties or anatomi-
cal locus. Others (e.g., DeYoe & van Essen, 1988) be-
lieve that, although somewhat specialized, the streams are
fuzzy, showing some common feature sensitivities.

If we assume for the moment that the streams are suffi-
ciently distinct to be the physiological substrate of fea-
ture modules, there are three critical questions: (1) Are
the feature streams topographic? (2) Is thereevidence for
a master map of locations? And (3) do the streams inter-
connect?

Feature-integration theory asserts that features are not
tied to location. However, there is little evidence of non-
topographic mapping in the visual system. The neurons
of extrastriate cortexhave larger receptive fields than do
neurons of lower visual areas, but they are still localized.
Bigger receptive fields may suggest coarser localization,
but it is possible for the combined output of many broadly
tuned mechanisms to give very precise information. Color
vision is a perfect example.

Feature-integration theory puts topographic information
in a master map of locations. Some (e.g., Treisman &
Gormican, 1988) use physiological data (e.g., Mishkin
et al., 1983; Ungerleider & Mishkin, 1982) to place the
master map of locations in the parietal lobe. Investiga-
tions (e.g., Levine, Warach, & Farah, 1985; Newcombe
& Russell, 1969) of patients with parietal lobe damage
have yielded deficits in localization, but no loss in object
recognition. This confirms a role for the parietal lobe in~
localization, but it provides no evidence that the parietal
lobe integrates features into perceptible objects. An al-
ternative scheme (Treisman & Gormican, 1988) places
the master map in the primary visual cortex (see
Figure 3). This seems an odd suggestion, because the neu-
rons in striate cortexare tuned to multiple features—that
is, they have some features already glued together. Why
would attention be necessary for feature integration?

Perhaps the key question is whether streams interact.
The physiological data are inconclusive, but it seems clear
that the streams cannot be viewed as three pipelines run-
ning from the eyetohigher visual centers. There are many
cross- and reciprocal connections, with convergence and
divergence of input/output. The extrastriate cortex
receives direct LGN input as well as striate cortex input
(Bullier & Girard, 1988). Although the significance of
the LGN input is unclear, it may act as a “gating” mecha-
nism for different areas to influence one another (Girard
& Bullier, 1989). There are also reciprocal connections
from higher levels back to lower ones. Zeki (1989) sug-
gests that these may connect the different processing
streams and allow integration. The streams also have
lateral cross-connections like those suggested in Figure 3
(DeYoe & van Essen, 1988). If these streams are to be
the substrate of feature modules, early vision more closely
resembles a network than a blackboard.

It would perhaps be best to leave “neuromythology”
at this point. However, many authors support perceptual
theories with the casual invocation of physiology. There-
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fore I cannot avoid the temptation to ask whether close
examination actually reveals any parallels between physio-
logical and behavioral data.

As noted above, there is no real evidence for a master
map of locations. However, the most obvious issue is
whether physiology predicts which conjunction searches
will be easy and which will be difficult. If streams are
feature modules, feature-integration theory makes the
strong prediction that conjunctions will require serial
search when the features come from different streams.
There is also a weaker prediction that effortless search
will occur if the conjunctive features come from the same
stream. The secondprediction is weaker, because it is pos-
sible to say that distinct feature modulesexist within each
stream.

The fuzzy streammodel makes prediction difficult, so
most authors use Livingstone and Hubel’s (1987) distinct
stream model. However, predictions based on the distinct
stream model fail. For example, color-binocular dispar-
ity search is easy (Nakayama & Silverman, 1986),
although color is processed by one stream (parvocellular-
blob-thin) and binocular disparity is processed through
a different stream (magnocellular-4B-thicklMT). Simi-
larly, observers can perform parallel search on conjunc-
tions of form and motion (McLeod et al., 1988), although
these features are processed by separate streams.

On the other hand, it may be difficult to detect con-
junctions of features processed within the same stream.
Spatial frequency and orientation, although their conjunc-
tion is difficult to detect in standard displays (Walters
et al., 1983), would both be processed in parvocellular-
interblob-pale stream ifthe frequency were highor in the
magnocellular stream if the frequency were low.

In sum, the physiological data are inconclusive but show
some evidence of stream interaction. However, the dis-
tinct stream model, if accepted at face value, does not
predict the difficulty of conjunction search.

Final Remarks
In this paper, I have used a wide range of evidence to

evaluate architectures for visual search. Although no one
piece of evidence is incontrovertible, the balance heavily
favors network theories overblackboard theories such as
feature integration. A network architecture places new
constraints on theories of visual search: the feature mod-
ules must be directly connected, spatially local constraints
must dominate, and focal attention must play no major
role in gluing features together.

Experimentalevidence challenges the three cornerstone
observations of bothfeature-integration and guided search
theories: (1) There is no evidence that identification can
be performed without localization. (2) Conjunction
searches are often parallel; there is no sharp distinction
between flat and sloped curves; and search functions are
difficult to interpret. And (3) illusory conjunctions may
have many explanations; there is no strong evidence to
support the feature-integration account. Moreover, other
evidence shows direct linking between features in parallel

tasks. Lastly, the physiological evidence used to support
feature-integration theory is, if anything, contradictory.
There is no convincing evidence that features are free-
floating or that attention glues them together.

Interrupttheory fares somewhat better. It acknowledges
that feature modules are topographic, but, like feature-
integration theory, interrupt theory still suggests that at-
tention is needed for feature identification. Sagi and Julesz
(1985) do not explain how attention permits identifica-
tion, so the theory might possibly be made compatible with
a network architecture. The Johnston and Pashler (1990)
theory could easily be viewed as a network theory. It as-
sumes that feature computations occur in parallel through-
out the visual field and that attention does not direct
processing. However, Johnston and Pashler still base their
theory on the assumption that targets may be localized
but not identified in parallel search. Other evidence
(Green, in press)does not support this belief. Nevertheless,
their theory seems to be in the right ballpark.

The feature modulesdescribed here are similar to what
others (Ballard, 1984; Barrow & Tenenbaum, 1978) call
intrinsic images—that is, topographic feature maps that
can compute spatially local constraints through relaxation
(Zucker, 1976) or some similar cooperative process. The
computations within each feature module and the integra-
tion of feature modules should not be viewed as distinct
stages, nor should a control process be assumed.

I have identified only the minimal architecture needed
to account for visual search. A complete visual architec-
ture would be much more complex than any of those sug-
gested here. One of the major conclusions is that visual
search is based on local processing. A network of intrin-
sic images is therefore sufficient to account for current
search data.

The following question remains: What is the role for
attention? If attention is not glue that combines raw fea-
tures into objects, then what is it? Current data do not
present a clear picture. Further, most psychological the-
ories are veryvague about attention’s role in perception.
For example, Johnston and Pashler (1990) suggest that
attention “transfers identity tocentral processes.” What
does this mean? For that matter, exactly how does atten-
tion act as “perceptual glue”?

One recent idea (Moran & Desimone, 1985) suggests
that attention is better conceived as a mask than as a beam.
Attention does not promote processing in one region but
rather inhibits it in another. This is consistent with our
introspections that attention is used not so much to en-
hance processing of the attended input, but to block out
extraneous input. In a cooperative processing model, this
could be accomplishedby limiting the size of the cooper-
ative neighborhoods (Kienker, Sejnowski, Hinton, &
Schumacher, 1986).

Green and Odom (1991) provide some support for the
mask theory. They have examined how the visual system
resolves ambiguity inherent in the aperture problem. A
grating moving through a circular aperture has a family
of possible motions. The ambiguity can be resolved by
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surrounding the aperture with a secondgrating of unam-
biguous direction. The aperture grating links to the sur-
round to form a single segment moving in the direction
of the surround. However, observers can reduce or even
eliminate the effect by tightly focusing attention on the
center of the display. The surround grating does not dis-
appear, but simply loosens its grip on the aperture grat-
ing. Attention seems to control segmentation, not by com-
bining features into objects, but by controlling which
objects link to form segments.

It is unlikely, however, that attention has a single expla-
nation. Recent evidence shows that attention is not one, but
several distinct mechanisms. For example, studies (e.g.,
Luck, Hillyard, Mangun, & Gazzaniga, 1989; Nakayama
& Mackben, 1990) suggest that there are separate tran-
sient and sustained attentional mechanisms. The transient
mechanism is bottom-up and automatic, and it directs the
gaze to an “interesting” location in space. The sustained
mechanism is top-down and under voluntary control.
There are several other proposed attentional mechanisms,
including Treisman and Sato’s (1990) feature-map inhib-
itor. The study of attention would also seem to benefit
from the divide-and-conquer strategy.
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NOTE

1. One difference between computational and biological vision resides
in their appeals to ultimate causation. In the biological sciences, people
usually attribute the state of the world to evolution, whereas computer
scientists use a computational teleology. Why does an Organism have
a particular physiology, behavior, and so forth? A biologist or psychol-
ogist will answer “evolutionary advantage.” A computer scientist,
however, will answer the same question with “reduction of computa-
tional complexity.”
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Notices and Announcements

21st Annual Meeting of the Society for Computers in Psychology
San Francisco, California

November 21, 1991

The21St Annual Meeting of the Society for Computers in Psychology will be held at the Hyatt Regency
Hotel at Embarcadero Center in San Francisco on November 21, 1991, the day before the annual meeting
of the Psychonomic Society. The meeting will include presentations, discussions, tutorials, and times for software
and hardware demonstrations. All areas of psychology are featured, including research, education, clinical
practice, and industrial applications.

For further information regarding the conference, contact William L. Palya, Department of Psychology,
Jacksonville State University, Jacksonville, AL 36265 (BITNET address FWLP@JSUMUS, phone (205) 782-
5641, FAX (205) 782-5680).

32nd Annual Meeting of the Psychonomic Society
San Francisco, California

November 22-24, 1991

The 32nd Annual Meeting of the Psychonomic Society will be held in San Francisco, November 22-24,
1991. The meetings will begin Friday morning and continue until Sunday at noon. The headquarters hotel
will be the Hyatt Regency San Francisco at Embarcadero Center.

The program and hotel reservation cards have been mailed to members and associates. A copy of the
program will be published in the November issue of the Bulletin of thePsychonomicSociety. Additional pro-
grams will be available at the registration desk for $6.00.

For further information, please contact the secretary-treasurer of the Society: Cynthia H. Null, P.O.
Box 7104, San Jose, California 95150-7104 (telephone: 415-604-1260).


